翻訳と辞書
Words near each other
・ Kappa calculus
・ Kappa Cancri
・ Kappa Canis Majoris
・ Kappa Capricorni
・ Kappa Cassiopeiae
・ Kappa Centauri
・ Kappa Cephei
・ Kappa Ceti
・ Kappa Chamaeleontis
・ Kappa Columbae
・ Kappa Coronae Australis
・ Kappa Coronae Borealis
・ Kappa Coronae Borealis b
・ Kappa Crucis
・ Kappa Crucis (star)
Kappa curve
・ Kappa Cygni
・ Kappa Cygnids
・ Kappa Delphini
・ Kappa Delta
・ Kappa Delta Chi
・ Kappa Delta Epsilon
・ Kappa Delta Kappa
・ Kappa Delta Phi
・ Kappa Delta Pi
・ Kappa Delta Rho
・ Kappa Delta Rho Fraternity House (Champaign, Illinois)
・ Kappa Draconis
・ Kappa Ebisen
・ Kappa effect


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kappa curve : ウィキペディア英語版
Kappa curve

In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa).
The kappa curve was first studied by Gérard van Gutschoven around 1662.
In the history of mathematics, it is remembered as one of the first examples of Isaac Barrow's application of rudimentary calculus methods to determine the tangent of a curve. Isaac Newton and Johann Bernoulli continued the studies of this curve subsequently.
Using the Cartesian coordinate system it can be expressed as:
:x^2(x^2 + y^2)=a^2y^2
or, using parametric equations:
:
\begin
x&=&a\sin t\\
y&=&a\sin t\tan t
\end

In polar coordinates its equation is even simpler:
:r=a\tan\theta
It has two vertical asymptotes at x=\pm a, shown as dashed blue lines in the figure at right.
The kappa curve's curvature:
:\kappa(\theta)=\sin(2\theta)\right" TITLE="\sin(2\theta)\right">)
==Tangents via infinitessimals==

The tangent lines of the kappa curve can also be determined geometrically using differentials and the elementary rules
of infinitessimal arithmetic. Suppose x and y are variables, while a is taken as a constant. From
the definition of the kappa curve,
: x^2(x^2 + y^2)-a^2y^2 = 0
Now, an infinitessimal change in our location must also change the value
of the left hand side, so
:d (x^2(x^2 + y^2)-a^2y^2) = 0
Distributing the differential and applying appropriate rules,
:d (x^2(x^2 + y^2))-d (a^2y^2) = 0
: (2 x dx ) (x^2+y^2) + x^2 (2xdx + 2y dy) - a^2 2y dy = 0
: ( 4 x^3 + 2 x y^2) dx + ( 2 y x^2 - 2 a^2 y ) dy = 0
: x ( 2 x^2 + y^2 ) dx + y (x^2 - a^2) dy = 0
: \frac = \frac

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kappa curve」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.